研究成果

論文一覧


2024年

  1.  D. Durdiev, M. Zaiser, F. Wendler, T. Tsuzuki, H. Azuma, S. Ogata, R. Kobayashi, and M. Uranagase, “Determining thermal activation parameters for ferroelectric domain nucleation in BaTiO3 from molecular dynamics simulations,” Appl. Phys. Lett., (2024).

2023年

  1. S. Ogata, and M. Uranagase, “Protonation of Strained Epoxy Resin under Wet Conditions via First-Principles Calculations Using the H+-Shift Method,” J. Phys. Chem. B 127(11), 2629–2638 (2023).
  2. S. Hayashi, N. Uemura, M. Uranagase, and S. Ogata, “Pressure-assisted decomposition of tricresyl phosphate on amorphous FeO using hybrid quantum-classical simulations,” J. Comput. Chem. 44(6), 766–776 (2023).
  3. T. Isogai, M. Uranagase, K. Motobayashi, S. Ogata, and K. Ikeda, “Probing collective terahertz vibrations of a hydrogen-bonded water network at buried electrochemical interfaces,” Chem. Sci. 14(24), 6531–6537 (2023).
  4. S. Ogata, and M. Uranagase “Erratum to ‘Protonation of Strained Epoxy Resin under Wet Conditions via First-Principles Calculations Using the H+-Shift Method,’” J. Phys. Chem. B 127(30), 6833–6834 (2023).
  5. H. Azuma, S. Shimoi, T. Tsuzuki, R. Kobayashi, M. Uranagase, G. Deguchi, F. Wendler, D. Durdiev, and S. Ogata, “Tuning ferroelectric properties of barium titanate by lateral strain: A molecular dynamics simulation study,” Phys. Stat. Solidi. Rapid Res. Lett., (2023).
  6. H. Azuma, S. Ogata, R. Kobayashi, M. Uranagase, T. Tsuzuki, D. Durdiev, and F. Wendler, “Microscopic structure and migration of 90° ferroelectric domain wall in BaTiO3 determined via molecular dynamics simulations,” J. Appl. Phys. 133(10), 104101 (2023).
  7. G. Deguchi, R. Kobayashi, H. Azuma, S. Ogata, M. Uranagase, and S. Spreafico, “Asymmetric domain nucleation from dislocation core in barium titanate: Molecular dynamics simulation using machine‐learning potential through active learning,” Phys. Stat. Solidi. Rapid Res. Lett., (2023).
  8. S. Aizu, S. Takimoto, N. Tanibata, H. Takeda, M. Nakayama, and R. Kobayashi, “Screening chloride Li‐ion conductors using high‐throughput force‐field molecular dynamics,” J. Am. Ceram. Soc. 106(5), 3035–3044 (2023).
  9. K. Matsunoshita, Y. Yamaguchi, M. Hamaie, M. Horibe, N. Tanibata, H. Takeda, M. Nakayama, M. Karasuyama, and R. Kobayashi, “Optimization of force-field potential parameters using conditional variational autoencoder,” Science and Technology of Advanced Materials: Methods 3(1), 2253713 (2023).

2022年

  1. S. Ogata, M. Uranagase, Y. Takahashi, and T. Kishi (2022) ‘Protonation and weakening of an epoxy resin–SiO2 composite with silane coupling agents under moist conditions’, MRS Communications, 12(3), pp. 315–321.
  2. T. Tsuzuki, S. Ogata, R. Kobayashi, M. Uranagase, S. Shimoi, D. Durdiev, and F. Wendler (2022) ‘Vacancy-assisted ferroelectric domain growth in BaTiO3 under an applied electric field: A molecular dynamics study’, Journal of applied physics, 131(19), p. 194101.
  3. R. Kobayashi, K. Nakano, and M. Nakayama (2022) ‘Non-equilibrium molecular dynamics study on atomistic origin of grain boundary resistivity in NASICON-type Li-ion conductor’, Acta materialia, 226, p. 117596.
  4. M. Nakayama, K. Nakano, M. Harada, N. Tanibata, H. Takeda, Y. Noda, R. Kobayashi, M. Karasuyama, I. Takeuchi, and M. Kotobuki (2022) ‘Na superionic conductor-type LiZr2(PO4)3 as a promising solid electrolyte for use in all-solid-state Li metal batteries’, Chemical communications , 58(67), pp. 9328–9340.

2021年

  1. S. Ogata, M. Uranagase, Y. Takahashi, and T. Kishi (2021) ‘First-Principles Calculations of the Protonation and Weakening of Epoxy Resin under Wet Conditions’, The journal of physical chemistry. B, 125(31), pp. 8989–8996.
  2. S. Ogata, and M. Uranagase (2021) ‘First-Principles Simulation Study on the Weakening of Silane Coupling to Silica under Alkaline Conditions’, Journal of Physical Chemistry C, 125(41), pp. 22907–22916.
  3. M. Uranagase, and S. Ogata (2021) ‘Nonequilibrium molecular dynamics method based on coarse-graining formalism: Application to a nonuniform temperature field system’, Physical review. E, 104(6-2), p. 065301.
  4. R. Kobayashi (2021) ‘nap: A molecular dynamics package with parameter-optimization programs for classical and machine-learning potentials’, Journal of open source software, 6(57), p. 2768.
  5. Z. Yang, R. E. Ward, N. Tanibata, H. Takeda, M. Nakayama, and R. Kobayashi (2021) ‘Exploring the diffusion mechanism of Li ions in different modulated arrangements of La(1-X)/3LixNbO3 with fitted force fields obtained via a metaheuristic algorithm’, Solid State Ionics, 366-367, p. 115662.
  6. K. Nakano, N. Tanibata, H. Takeda, R. Kobayashi, M. Nakayama, and N. Watanabe (2021) ‘Molecular Dynamics Simulation of Li-Ion Conduction at Grain Boundaries in NASICON-Type LiZr2(PO4)3 Solid Electrolytes’, Journal of Physical Chemistry C, 125(43), pp. 23604–23612.

2020年

  1. Takahiro Tsuzuki, Shuji Ogata, and Masayuki Uranagase.(2020). Large-scale DFT simulation of quinone molecules encapsulated in single-walled carbon nanotube for novel Li-ion battery cathode. Computational Materials Science,171 , 109281-1 – 109281-8
  2. Masayuki Uranagase and Shuji Ogata.(2020). FE-CLIP: a tool for the calculation of the solid-liquid interfacial free energy. Comp. Phys. Commun.
  3. Masayuki Karasuyama, Hiroki Kasugai, Tomoyuki Tamura, and Kazuki Shitara.(2020). Computational Design of Stable and Highly Ion-conductive Materials using Multi-objective Bayesian Optimization: Case Studies on Diffusion of Oxygen and Lithium. arXiv.org
  4. Ryo Kobayashi, Yasuhiro Miyaji, Koki Nakano and Masanobu Nakayama.(2020). High-throughput production of force-fields for solid-state electrolyte materials. APL Materials.

2019年

  1. Nobuko Ohba, Shuji Ogata, and Ryoji Asahi. (2019).  Hybrid Quantum-Classical Simulation of Li Ion Dynamics and the Decomposition Reaction of Electrolyte Liquid at a Negative- Electrode/Electrolyte Interface.  J. Phys. Chem. C, 123, 9673 – 9679
  2. Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, Masayuki Karasuyama.(2019). Multi-objective Bayesian Optimization using Pareto-frontier Entropy. arXiv.org
  3. Tomoyuki Tamura, Masayuki Karasuyama.(2019). Active-learning-based efficient prediction of ab initio atomic energy: a case study on a Fe random grain boundary model with millions of atoms. arXiv.org

2018年

  1. S. Ogata and M. Uranagase. (2018).  Unveiling the Chemical Reactions Involved in Moisture-Induced Weakening of Adhesion between Aluminum and Epoxy Resin. J. Phys. Chem. C, 122, 17748 – 17755.
  2. M. Uranagase, S. Ogata, K. Tanaka, H. Mori, and S. Tajima. (2018). Efficient scheme for calculating work of adhesion between a liquid and polymer-grafted substrate. J. Chem. Phys. , 149, 064703-1 – 064703-9.
  3. T. Tsuzuki, S. Ogata, and M. Uranagase. (2018). Large-Scale DFT Simulation of Quinone Molecules Encapsulated in SWCNT for Cathodes of Rechargeable Battery. AIP Proceedings of ICNN 2018.
  4. Y. Yonezu, T. Tamura. T. Takeuchi, M. Karasuyama. (2018). Knowledge-Transfer based Cost-effective Search for Interface Structures: A Case Study on fcc-Al [110] Tilt Grain Boundary. Physical Review Materials ( American Physical Society ).
  5. Yusuke NODA, Ryo KOBAYASHI, Masanobu NAKAYAMA etc. (2018). Ca doping effect on the Li-ion conductivity in NASICON-type solid electrolyte LiZr2(PO4)3: A first-principles molecular dynamics study. APL Materials ( AIP Publishing ), 6, 060702.

2017年

  1. Ryo Kobayashi, Tomoyuki Tamura, Ichiro Takeuchi, Shuji Ogata. (2017).  Development of Neural-Network Interatomic Potential for Structural Materials. Solid State Phenomena ( Trans Tech Publications ), 258, 69.
  2. Tomoyuki Tamura, Masayuki Karasuyama, Ryo Kobayashi, Ryuichi Arakawa, Yoshinori Shiihara, Ichiro Takeuchi. (2017). Fast and scalable prediction of local energy at grain boundaries: machine-learning based modeling of first-principles calculations. Modelling and Simulation in Materials Science and Engineering ( IOP Publishing ), 25, 075003.
  3. Ryo Kobayashi, D. Giofre, T. Junge, M. Ceriotti, W. A. Curtin. (2017). Neural-network potential for Al-Mg-Si alloys. Physical Review Materials, 1, 053604.
  4. Shuji Ogata, Yusuke Takahashi. (2017). Moisture-Induced Reduction of Adhesion Strength between Surface Oxidized Al and Epoxy Resin: Dynamics Simulation with Electronc Structure Calculation. J. Phys. Chem. C, 120, 13630 – 13637.
  5. Tomoyuki Tamura, Masanori Kohyama, and Shuji Ogata. (2017). Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery. Phys. Rev. B, 96, 035107.
  6. Uranagase and S. Ogata. (2017). Smart MD-Sampling Method for Interfacial Free Energy between Polymer-grafted Substrate and Liquid. MRS Advences.
  7. T. Tsuzuki, S. Ogata, M. Uranagase. (2017). Large-scale DFT Simulation about Insertion and Extraction of Li’s for Quinons@SWCNT for Rechargeable Battery. MRS Advences.
  8. H. Maeda, T. Tamura, T. Kasuga. (2017). Improving the biocompatibility of tobermorite by incorporating calcium phosphate clusters. Bio-Medical Materials and Engineering, 28, 31 – 36.
  9. H. Maeda, T. Tamura, T. Kasuga. (2017). Experimental and theoretical investigation of the structural role of titanium oxide in CaO-P2O5-TiO2 invert glass. J. Physical Chemistry B ( American Chemical Society ), 121, 5433 – 5438.
  10. Tomohiro Yonezu, Tomoyuki Tamura, Ichiro Takeuchi, Masayuki Karasuyama. (2017). Knowledge-Transfer based Cost-effective Search for Interface Structures: A Case Study on fcc-Al [110] Tilt Grain Boundary. arXiv.

2016年

  1. T. Kouno, S. Ogata, T. Shimada, T. Tamura, R. Kobayashi. (2106). Enhanced Si–O Bond Breaking in Silica Glass by Water Dimer: A Hybrid Quantum–Classical Simulation Study. J. Phys. Soc. Jpn., 65, 054601-1 – 054601-9.
  2. R. Kobayashi, T. Tamura, I. Takeuchi, S. Ogata. (2016).  Development of Neural-Network Interatomic Potentials for Structural Materials. Solid State Phenomena, 258, 69 – 72.
  3. Shuji Ogata, Yusuke Takahashi. (2016). Moisture-Induced Reduction of Adhesion Strength between Surface Oxidized Al and Epoxy Resin: Dynamics Simulation with Electronc Structure Calculation.  J. Phys. Chem. C, 120, 13630 – 13637.

2015年

  1. A.M Ito, A. Takayama, Y. Oda, T. Tamura, R. Kobayashi, T. Hattori, S. Ogata et al. (2015). Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation. J. Nuclear Material, 463, 109 – 115.
  2. A.M. Ito, A. Takayama, Y. Oda, T. Tamura, R. Kobayashi, T. Hattori, S. Ogata et al. (2015).  Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation. Nucl. Fusion, 55, 073013-1 – 073013-11.
  3. K. Tanaka, S. Ogata, R. Kobayashi, T. Tamura, and T. Kouno. (2015). A molecular dynamics study on thermal conductivity of thin epoxy polymer sandwiched between alumina fillers in heat-dissipation composite material. Int. J. Heat and Mass Transfer, 89, 714 – 723.
  4. Nobuko Ohba, Shuji Ogata, Takahisa Kouno, and Ryoji Asahi. (2015). Thermal diffusion of correlated Li-ions in graphite: a hybrid quantum-classical simulation study. Comp. Mater. Sci., 108, 250 – 257.

2014年

  1. Tamura, T., Kobayashi, R., Ogata, S., and Ito, A. M. (2014). First-principles investigation of possible clustering of noble gas atoms implanted in bcc tungsten. Modelling and Simulation in Materials Science and Engineering 22(1), 015002. doi:10.1088/0965-0393/22/1/015002
  2. Yasuhiro Kajima, Shuji Ogata, Ryo Kobayashi, Miyabi Hiyama, and Tomoyuki Tamura. (2014). Fluctuating Local Recrystallization of Quasi-Liquid Layer of Sub-Micrometer-Scale Ice: A Molecular Dynamics Study. J. Phys. Soc. Jpn (Letter), 83, 083601-1-083601-4.

  3. Ryo kobayashi, Tatsunori Hattori, Tomoyuki Tamura, Shuji Ogata. (2014). A molecular dynamics study on bubble growth in tungsten under helium irradiationJournal of Nuclear Materials, 463,1071 – 1074.

  4. 前田浩孝, 田村友幸, 春日敏宏. (2014). 層状構造をもつケイ酸カルシウム系骨修復材料へのリン酸カルシウムクラスターの導入. J. Soc. Inor. Mater. Jpn,368,49 – 53.

  5. S. Tanaka, M. Kitta, T. Tamura, Y. Maeda, T. Akita, M. Kohyama. (2014). Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations. J. Material Science,49,4032 – 4037.

2013年

  1. Shuji Ogata, Nobuko Ohba, and Takahisa Kouno: Multi-Thousand-Atom DFT Simulation of Li-Ion Transfer through the Boundary between the Solid–Electrolyte Interface and Liquid Electrolyte in a Li-Ion Battery, The Journal of Physical Chemistry C 117, 17960 (2013). http://pubs.acs.org/doi/abs/10.1021/jp405912f
  2. Kobayashi, R., Ohba, N., Tamura, T., & Ogata, S. A Monte Carlo Study of Host-Material Deformation Effect on Li Migration in Graphite, Journal of the Physical Society of Japan, 82, 094603 (2013). doi:10.7566/JPSJ.82.094603

2012年

  1. Yashuhiro Kajima, Miyabi Hiyama, Shuji Ogata, Ryo Kobayashi, and Tomoyuki Tamura: Fast Time-Reversible Algorithms for Molecular Dynamics of Rigid-Body Systems, J. Chem. Phys., Vol. 136, Issue 23 (2012), 234105-1-8.
  2. N. Ohba, S. Ogata, T. Kouno, T. Tamura, and R. Kobayashi, Linear Scaling Algorithm of Real-space Density Functional Theory of Electrons with Correlated Overlapping Domains, Computer Physics Communications (2012) vol. 183 pp. 1664–1673.
  3. T. Tamura, T. Ohwaki, A. Ito, Y. Ohsawa, R. Kobayashi, and S. Ogata, Theoretical Mn K-edge XANES for Li 2MnO 3: DFT + U study, Modelling and Simulation in Materials Science and Engineering (2012) vol. 20 (4) pp. 045006. http://dx.doi.org/10.1088/0965-0393/20/4/045006
  4. N. Ohba, S. Ogata, T. Tamura, R. Kobayashi, S. Yamakawa, and R. Asahi, Enhanced Thermal Diffusion of Li in Graphite by Alternating Vertical Electric Field: A Hybrid Quantum-Classical Simulation Study, Journal of the Physical Society of Japan (2012) vol. 81 pp. 023601.
  5. Ryo Kobayashi, Takahide Nakamura and Shuji Ogata, Concurrent Hybrid Simulation of Fracture Dynamics of Suspended Graphene at Finite Temperatures, Transactions of the Materials Research Society of Japan, 37(1) (2012).

2011年

  1. T. Nakamura, R. Kobayashi, and S. Ogata, Improvement of Coarse-Grained Particle Method for Materials: Finite-Temperature and Inhomogeneity Effects, Computer Modeling in Engineering and Sciences (2011) vol. 73 (4) pp. 357–384.
  2. R. Kobayashi, T. Nakamura, and S. Ogata, A Coupled Molecular Dynamics/Coarse-Grained-Particle Method for Dynamic Simulation of Crack Growth at Finite Temperatures, MATERIALS TRANSACTIONS (2011) vol. 52 (8) pp. 1603-1610, http://dx.doi.org/10.2320/matertrans.M2011116
  3. Tomoyuki Tamura, Masaru Sakurai, Takahide Nakamura, Ryo Kobayashi, and Shuji Ogata: Theoretical mechanical properties of silica glass: first-principles tensile tests, Trans. Mater. Res. Soc. Jpn, Vol.36, No.1 (2011) pp.35-40.
  4. 中村貴英,河野貴久,小林 亮,尾形修司:ハイブリッドシミュレーションに適応した可視化ソフトウェアAkiraの開発,Journal of Computer Chemistry Japan,Vol. 10, No.2 (2011) pp. 59-68.
  5. N. Ohba, S. Ogata, T. Tamura, S. Yamakawa, and R. Asahi:A hybrid quantum-classical simulation study on stress-dependence of Li diffusivity in graphite,Computer Modeling in Engineering & Sciences, Vol. 75, No. 4 (2011) pp. 247-266.
  6. Yasuhiro Kajima, Miyabi Hiyama, Shuji Ogata, and Tomoyuki Tamura: Exactly Time-Reversible Molecular Dynamics Algorithm for Rigid-Body Systems, J. Phys. Soc. Jpn,, Vol. 80 (2011), pp. 114002-1-7.

2010年

  1. S. Ogata, Y. Abe, N. Ohba, R. Kobayashi, Stress-induced nano-oxidation of silicon by diamond-tip in moisture environment: A hybrid quantum-classical simulation study, Journal of Applied Physics (2010) vol. 108 pp. 064313.
  2. R. Kobayashi, T. Nakamura, and S. Ogata, A simple dynamical scale-coupling method for concurrent simulation of hybridized atomistic/coarse-grained-particle system, International Journal for Numerical Methods in Engineering (2010) vol. 83 (2) pp. 249–268, http://dx.doi.org/10.1002/nme.2846
  3. Y. Inoue, R. Kobayashi, S. Ogata, and T. Gotoh, Numerical Simulation of Fluid Induced Vibration of Graphenes at Micron Scales, Computer Modeling in Engineering and Sciences (2010) vol. 63 (2) pp. 137–162.

2009年

  1. T. Nakamura, R. Kobayashi, and S. Ogata, Recursive Coarse-Grained Particle Method for Inhomogeneous Materials: Re-formulation Based on Atom-Relaxation, MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS (2009) vol. 1130 pp. W01-09.
  2. S. Ogata, Y. Abe, and R. Kobayashi, Adaptive Hybridization of Density-Functional Theory and Molecular Dynamics: Reaction of Pressurized Water Molecule Trapped in Between Nano-Structured Diamond and Silicon, MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS (2009) vol. 1130pp. W06-32.
  3. S. Ogata, R. Kobayashi, and T. Gotoh, A Suite of Hybrid Simulation Schemes for Nano-to-Micrometer Scale Processes at Solid-Fluid Interfaces, Prog. Theor. Phys. Suppl. (2009) vol. 178 pp. 149–156.
  4. Yingwen Song, Yoshio Tanaka, Hiroshi Takemiya, Hidemoto Nakada, Satoshi Sekiguchi, Aiichiro Nakano, and Shuji Ogata: The Development and Evaluation of An Integrated Framework Supporting Sustainable Execution for Large-Scale Computations on Grids, International Journal of Computational Science, Vol. 3, No.1 (2009) pp. 18-31
  5. Kenji Tsuruta, Toshiyuki Koyama, and Shuji Ogata: Classical and Hybrid Density-Functional/Classical molecular Dynamics Study of Dislocation Core in Alumina Ceramic, Materials Transaction,Vol. 50, No. 5 (2009) pp. 1015-1018.

2008年

  1. Takahisa Kouno and Shuji Ogata: Activation Energy for Oxygen Diffusion in Strained Silicon: A Hybrid Quantum-Classical Simulation Study with the Nudged Elastic Band Method, J. Phys. Soc. Jpn, Vol. 77, No.5 (2008) pp. 054708-1-10.
  2. R. Kobayashi, T. Nakamura, and S. Ogata, Development and Implementation of Recursive Coarse-Grained Particle Method for Meso-Scale Simulation, MATERIALS TRANSACTIONS (2008) vol. 49 (11) pp. 2541-2549, http://dx.doi.org/10.2320/matertrans.MB200813
  3. Y. Inoue, J. Tanaka, R. Kobayashi, S. Ogata, and T. Gotoh, Multiscale Numerical Simulation of Fluid-Solid Interaction, MATERIALS TRANSACTIONS (2008) vol. 49 (11) pp. 2550-2558, http://dx.doi.org/10.2320/matertrans.MB200814